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Energy production using tidal forces

o Tidal turbines: Extract energy from tidal currents
@ Industrially relevant scale: Arrays comprising dozens to hundreds of
turbines

e Suitable sites: high peak flow rates as P o u3

https://islayenergytrust.files.wordpress.com/2009/02/hs-array. jpg
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Layout optimization for tidal turbine arrays

@ Turbine placement affects the flow

@ Optimizing locations of turbines has enormous impact on extracted
power (Funke et al., 2014)

@ OpenTidalFarm performs layout optimization by applying efficient
gradient-based optimization algorithms.
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PDE-constraint optimization

Common structure:

Lneig J(z(d), d), (objective)
subject to

h(d) <0, (inequality constraint)

g(d) =0, (equality constraint)

where
@ J:Z x D — R is the objective functional
@ D > d is the control space
@ z: D — Z is the operator that solves the PDE

F(z(d), d) = 0.

@ D and Z are Hilbert spaces
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Continuous approach

@ Turbine farm configuration represented by spatially varying density
function, i.e. D 3 d is a function space

@ Advantages over discrete approach:
e By integrating over optimised density, one obtains an approximation for
the optimal number of turbines
e Turbines not individually resolved = lower mesh resolution still
produces reasonable results
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Optimisation loop

Initial turbine density as user input
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% \_/ Optlmlsatlon step PDE solve
Solve shallow water equations &
Evaluate functional of interest

TidalFarm
dJ

Adjomt PDE solve

Solve adjomt equations
Evaluate functional gradlenl

e z = (u,n) solution of the shallow water equations
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Gradient depends on inner product

e Computing dJ/dd is crucial for optimization

@ Riesz-representation theorem: For a Hilbert space H, every linear
functional (an element of H*) is isomorphic to an element of H.

@ The gradient is a Riesz-representation of dJ/dd:

dJ
d)od = Vh(d)-dd
& ()50 = Vr(d)
— (Vh(d),8d)
— (VJs(d), 8d)
Gradient in 2 inner product Gradient in L2 inner product
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Which representation is to choose? Is it important?

e Naturally, (+,-)p corresponds to control space D
@ Most implementations of optimisation methods assume D = R”

o What if D # R"? Particularly, what happens in the continuous
approach?
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Which representation is to choose? Is it important?

e Naturally, (+,-)p corresponds to control space D
@ Most implementations of optimisation methods assume D = R”

o What if D # R"? Particularly, what happens in the continuous
approach?

Intuitively: Disrespecting inner products is somehow inaccurate (think
geometrically: angles, distances)

Question: What exactly are the drawbacks?
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1-D continuous optimisation problem

1 i fluy=(1—u,1—
() uELrp(I[g,l]){ (W) =0-u U)Lz}
df

S =—(1-u)p = Vha(u)=—(1-u)

Continuous L? representation: Using steepest descent with exact line
search with ug = 0, the minimum is found after one iteration!

Applying finite element discretisation = (1) becomes

(2) min {f(ﬁ) —-(T-a™M(I- J)}

geRrn
L0 =~ DM ) = Via@)= (1 -0)TM

Gradient now contains scaling by mass matrix!
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How many iterations k using ¢? representation?

Analytically: Given a convergence threshold ¢,

Amax _ 1 log(2¢) (linear in hmax)

hmin min

k > —g log(2¢)

Numerically:
100000,

80000

60000

Iterations

40000

20000

200 400 600 800 1000 1200
P P

— Disrespecting inner product yields mesh-dependent convergence!

— Several hundred thousand iterations vs 1 !
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How does this relate to the continuous turbine
optimisation problem?
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Randomly refined meshes
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Two inner product representations for dJ/dd

(a) L? representation (b) ¢2 representation
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Two inner product representations for dJ/dd

(a) L? representation

—

b) ¢2 representation
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= Choice of inner product may decide over economic viability!

—> “Respect the inner product of the control space of your problem!”
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Many thanks for your
attention!
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