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Energy production using tidal forces

Tidal turbines: Extract energy from tidal currents

Industrially relevant scale: Arrays comprising dozens to hundreds of
turbines

Suitable sites: high peak flow rates as P ∝ u3

https://islayenergytrust.files.wordpress.com/2009/02/hs-array.jpg
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Layout optimization for tidal turbine arrays

Turbine placement affects the flow

Optimizing locations of turbines has enormous impact on extracted
power (Funke et al., 2014)

OpenTidalFarm performs layout optimization by applying efficient
gradient-based optimization algorithms.

⇒

+75% power
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PDE-constraint optimization

Common structure:

min
d∈D

J(z(d), d), (objective)

subject to

h(d) ≤ 0, (inequality constraint)

g(d) = 0, (equality constraint)

where

J : Z × D → R is the objective functional

D 3 d is the control space

z : D → Z is the operator that solves the PDE

F (z(d), d) = 0.

D and Z are Hilbert spaces
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Continuous approach

Turbine farm configuration represented by spatially varying density
function, i.e. D 3 d is a function space

Advantages over discrete approach:

By integrating over optimised density, one obtains an approximation for
the optimal number of turbines

Turbines not individually resolved ⇒ lower mesh resolution still
produces reasonable results
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Optimisation loop

  

Optimisation step
Improve turbine density

PDE solve
Solve shallow water equations
Evaluate functional of interest

Adjoint PDE solve
Solve adjoint equations
Evaluate functional gradient

+

Initial turbine density as user input
 

z = (u, η) solution of the shallow water equations
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Gradient depends on inner product

Computing dJ/dd is crucial for optimization

Riesz-representation theorem: For a Hilbert space H, every linear
functional (an element of H∗) is isomorphic to an element of H.

The gradient is a Riesz-representation of dJ/dd :

dJ

dd
(d)δd = ∇J1(d) · δd

=
(
∇J2(d), δd

)
L2

=
(
∇J3(d), δd

)
H1

Gradient in `2 inner product Gradient in L2 inner product
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Which representation is to choose? Is it important?

Naturally, (·, ·)D corresponds to control space D

Most implementations of optimisation methods assume D = Rn

What if D 6= Rn? Particularly, what happens in the continuous
approach?

Intuitively: Disrespecting inner products is somehow inaccurate (think
geometrically: angles, distances)

Question: What exactly are the drawbacks?
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1-D continuous optimisation problem

min
u∈L2([0,1])

{
f (u) = (1− u, 1− u)L2

}
(1)

df

du
(u)(·) = −(1− u, ·)L2 =⇒ ∇fL2(u) = −(1− u)

Continuous L2 representation: Using steepest descent with exact line
search with u0 = 0, the minimum is found after one iteration!

Applying finite element discretisation =⇒ (1) becomes

min
~u∈Rn

{
f (~u) =

1

2
(~1− ~u)TM(~1− ~u)

}
(2)

df

d~u
(~u)(·) = −

(
(~1− ~u)TM, ·)`2 =⇒ ∇f`2(~u) = −(~1− ~u)TM

Gradient now contains scaling by mass matrix!
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How many iterations k using `2 representation?

Analytically: Given a convergence threshold ε,

k ≥ −3

2
log(2ε)

hmax

hmin
− 1

4
log(2ε) (linear in

hmax

hmin
)

Numerically:
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=⇒ Disrespecting inner product yields mesh-dependent convergence!
=⇒ Several hundred thousand iterations vs 1 !
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How does this relate to the continuous turbine
optimisation problem?
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Randomly refined meshes
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Two inner product representations for dJ/dd

(a) L2 representation (b) `2 representation
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Two inner product representations for dJ/dd

=⇒ Choice of inner product may decide over economic viability!

=⇒ “Respect the inner product of the control space of your problem!”
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Many thanks for your
attention!
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